

Tetrahedron Letters 43 (2002) 5845-5847

Stereoselective construction of functionalized (Z)-fluoroalkenes directed to depsipeptide isosteres

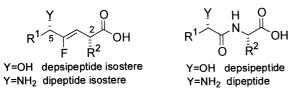
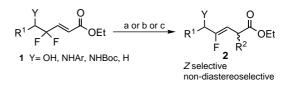
Midori Okada,^a Yuko Nakamura,^a Akio Saito,^b Azusa Sato,^a Hiroaki Horikawa^a and Takeo Taguchi^{b,*}

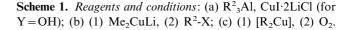
^aTokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo 162-8666, Japan ^bTokyo University of Pharmacy and Life Science, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan

Received 10 May 2002; revised 10 June 2002; accepted 14 June 2002

Abstract—Cu(I)-mediated alkyl-transfer reaction of trialkylaluminum (R_3Al) with (*E*)- or (*Z*)-4,4-difluoro-5-hydroxyallylic alcohol derivatives proceeded in an SN'-type manner to give the corresponding 2-alkylated (*Z*)-4-fluoro-5-hydroxyhomoallylic alcohol derivatives with 2,5-*syn*- or 2,5-*anti* selectivity, respectively. Oxidation of the primary hydroxyl group of the product to carboxylic acid was easily achieved without epimerization at the chiral centers. © 2002 Elsevier Science Ltd. All rights reserved.

Fluoroolefins (-CF=CH-) are considered to be ideal mimics for amide bonds (-CO-NH-) due to the close similarity of the steric and electronic properties.¹ Contrary to these similarities, fluoroolefins should be nonhydrolyzable bonds both chemically and enzymatically, and the lack of rotational freedom of this bond is also a different property from that of the amide bond. On the basis of these unique properties, utilization of (Z)fluoroalkene dipeptide or depsipeptide isosteres as nonand/or conformationally hydrolyzable restricted replacements for the parent amide bonds has attracted much attention in the field of medicinal chemistry (Fig. 1).²⁻⁵ For the synthesis of fluoroalkene dipeptide or depsipeptide isosteres,²⁻⁵ there remains several problems to be solved with respect to the stereochemical control of the Z-configuration of the fluoroolefin part and the relative stereochemistry of the two chiral centers (2- and 5-positions), as well as the use of readily obtainable starting material.

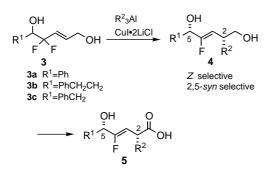




Figure 1. Displacement of amide bond by Z-fluoroolefin

fluoro- β , γ -enoates **2** can be prepared from γ , γ -difluoro- α , β -enoates **1** upon treatment with trialkylaluminum (**R**₃Al) and Cu(I) or through Me₂CuLi-mediated reductive defluorination followed by α -alkylation with alkyl halide (Scheme 1, a or b).⁶ As an alternative method for the synthesis of **2** from **1**, Otaka demonstrated the utilization of organocopper reagents under reduction–oxidative alkylation conditions (Scheme 1, c).⁷ Although these reactions proceed with complete *Z* selectivity, low diastereoselectivity in each reaction is a severe problem to be solved.

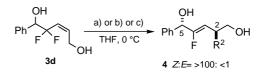
Recently, we have reported that α -alkylated (Z)- γ -

Further efforts were made to develop a highly stereoselective preparation of these compounds, and we found that Cu(I)-mediated alkyl-transfer reaction of trialkylaluminum (R_3Al) with (E)-4,4-difluoro-5-hydroxyallylic alcohol derivatives **3** provides the corresponding 2-alkylated 4-fluorohomoallylic alcohol derivatives **4** in a completely Z and 2,5-syn selective manner (Scheme 2). In this paper, we report these promising results for the preparation of (Z)-fluoroalkene depsipeptide isosteres **5**.



0040-4039/02/\$ - see front matter @ 2002 Elsevier Science Ltd. All rights reserved. PII: S0040-4039(02)01169-3

Keywords: fluoroolefin; difluoroallyl alcohol; trialkylaluminum; cuprous iodide; depsipeptide.


^{*} Corresponding author. Tel.: +81-426-76-3257; fax: +81-426-76-3257; e-mail: taguchi@ps.toyaku.ac.jp

Scheme 2.

As the substrates, we chose both *E*- and *Z*-isomers of 4,4-difluoro-5-hydroxyallylic alcohol derivatives $(3a-c^8)$ and $3d^9$ to examine the reactivity and the stereochemical outcome in organocopper-mediated reactions to convert to the 2-alkylated 4-fluorohomoallylic alcohol derivative 4.

In Table 1, preliminary results of reactions of (E)difluoroallylic alcohols 3a-c with R²₂CuLi (entries 8-10) and $R_{3}^{2}Al-CuI\cdot 2LiCl$ (entries 2–7) are shown. Reaction of 3a with Me₂CuLi proceeded smoothly (THF, 0°C, 2.5 h) to give the 2-methylated homoallylic alcohol 4a-1 in high yield (90%) with relatively high Zselectivity (Z/E=15), but with low diastereoselectivity (syn|anti=2 for the Z isomer) (entry 8). Similar high Z selectivity but almost no diastereoselectivity was observed in the reactions of **3a** or **3b** with alkyllithiumbased copper reagents (entries 9 and 10). On the other hand, when the reaction of (E)-diffuoroallylic alcohols **3a-c** was conducted using a combination of trialkylaluminum (R₃Al, 5–10 equiv.) and CuI·2LiCl¹⁰(2.5 equiv.) in THF at 0°C for 15-20 h, the desired 4-fluoro-5hydroxyhomoallylic alcohols 4a-c were obtained in good to excellent yield (62-98%) with complete Z-selectivity and 2,5-syn diastereoselectivity (entries 2–7).¹¹ In the absence of CuI·2LiCl, no reaction occurred upon treating 3a with Me₃Al resulting in the recovery of 3a (entry 1). Thus, Cu(I) is a crucial additive for the alkyl-transfer reaction of trialkylaluminum to proceed.12,13

Scheme 3. Reagents and conditions: (a) Me₃Al, CuI·2LiCl, 22 h, 4a-1 53%, syn/anti=1/11; (b) Me₂CuLi, 4 h, 4a-1 76%, syn/anti=1/4.7; (c) *i*-Bu₃Al, CuI·2LiCl, 22 h, 4a-2 30%, anti only.

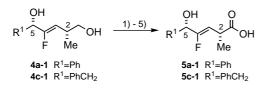
The reactivity and stereochemical outcome of Z-isomer 3d was compared with those of *E*-isomer 3a. The results obtained are shown in Scheme 3. Reaction of Z-isomer 3d under the similar conditions (Me₃Al, CuI·2LiCl, THF, 0°C, 22 h) proceeded more slowly than that of E-isomer 3a to give the methylated 4fluorohomoallylic alcohol 4a-1 in moderate yield (53%) along with the recovery of 3d (41%). The stereochemistry of the product thus obtained indicated that the reaction proceeds in a highly Z-selective manner (Z/E)>100) and in a relatively high anti-selective manner (syn/anti=1/11), opposite to that of *E*-isomer **3a** (Scheme 3). Using *i*-Bu₃Al instead of Me₃Al under similar conditions, 3d gave the allylic substitution product 4a-2, having Z-configuration and 2,5-anti relative stereochemistry, in 30% yield along with the recovery of 3d (49%). As in the case of E-isomer 3a, reaction of Z-isomer 3d with Me₂CuLi proceeded with lower diastereoselectivity (syn|anti=1/4.7) to give **4a-1** in 76% yield (Scheme 3).

The results mentioned above indicated that using the *E*or *Z*-isomer of 4,4-difluoro-5-hydroxyallylic alcohol 3, both the *syn* or *anti* isomers of 2-alkylated (*Z*)-4-fluoro-5-hydroxyhomoallylic alcohol 4 are highly selectively constructed by the reaction with R_3Al and CuI-2LiCl, although the product yield should be improved in the case of the *Z*-isomer of 3.

Oxidation of the primary hydroxyl group of 4 to carboxylic acid can be achieved by Jones' oxidation after protection of the secondary hydroxyl group as its acetate form to give the desired acid 5 (5a-1 in 53% and

Table 1. Reaction of (E)-diffuoroallylic alcohol 3a-c with $R^2_3Al-Cul\cdot 2LiCl$ or R^2_2CuLi

Entry	1	\mathbb{R}^1	Reagent	4	\mathbb{R}^2	Yield (%) ^a	Z/E^{b}	syn:anti ^{b,c}
1	3a	Ph	Me ₃ Al	4a-1	Me	0^{d}		
2			Me ₃ Al, CuI·2LiCl	4a-1	Me	98	>95	>95:1
3			<i>i</i> -Bu ₃ Al, CuI·2LiCl	4a-2	<i>i</i> -Bu	68	>95	>95:1
4	3b	PhCH ₂ CH ₂	Me ₃ Al, CuI·2LiCl	4b-1	Me	65	>95	>95:1
5			<i>i</i> -Bu ₃ Al, CuI·2LiCl	4b-2	<i>i</i> -Bu	62	>95	>95:1
5	3c	PhCH ₂	Me ₃ Al, CuI·2LiCl	4c-1	Me	98	>95	>95:1
7			<i>i</i> -Bu ₃ Al, CuI·2LiCl	4c-2	<i>i</i> -Bu	78	>95	>95:1
3	3a	Ph	Me ₂ CuLi	4a-1	Me	90	15	2:1
)			n-Bu ₂ CuLi ^e	4a-3	<i>n</i> -Bu	58	13	1.1:1
0	3b	PhCH ₂ CH ₂	Me ₂ CuLi ^e	4b-1	Me	90	11	1:1


^a Isolated yields.

^b The ratio was determined by ¹H and ¹⁹F NMR.

^c For the Z-isomer.

^d Recovery of 1a.

^e Me₃Al (2 equiv.) was added.

Scheme 4. Reagents and conditions: (1) TBDMSCl, imidazole, DMF; (2) Ac₂O, Et₃N, THF; (3) TBAF, THF; (4) CrO₃, H₂SO₄, acetone; (5) KOH, H₂O–MeOH, then 10% HCl.

5c-1 in 52% overall yield, respectively), without detectable epimerization at the chiral centers (Scheme 4).

In conclusion, we have developed a completely stereoselective synthesis of (Z)- and 2,5-syn 2-alkyl-4-fluoro-5hydroxy-3-alkenoic acid through the Cu(I)-mediated allylic substitution reaction of trialkylaluminum with (E)-4,4-difluoro-5-hydroxyallylic alcohol derivative. The present reaction should provide an efficient method for the preparation of functionalized Z-fluoroolefins, which, in particular, are applicable to the preparation of depsipeptide isosteres. Investigation on the mechanistic details of the present reaction is currently in progress.

Acknowledgements

The authors thank Dr. Motoo Shiro of the Rigaku Corporation for X-ray analysis of **4a-2** and **4c-2**. This work was partly supported by a Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology of Japan.

References

- (a) Abraham, R. J.; Ellison, S. L. R.; Schonholzer, P.; Thomas, W. A. *Tetrahedron* **1986**, *42*, 2101; (b) Cieplak, P.; Kollman, P. A. *J. Comput. Aided Mol. Des.* **1993**, *7*, 291–304; (c) Hann, M. M.; Sammes, P. G.; Kennewell, P. D.; Taylor, J. B. *J. Chem. Soc.*, *Perkin Trans. 1* **1982**, 307.
- (a) Allemendinger, T.; Felder, E.; Hungerbuhler, E. In Selective Fluorination in Organic and Bioorganic Chemistry; Welch, J. T., Ed.; ACS Symposium Series 456; ACS: Washington, DC, 1991; pp. 186–195; (b) Welch, J. T.; Lin, J.; Boros, L. G.; DeCorte, B.; Bergmann, K.; Gimi, R. In Biomedical Frontiers of Fluorine Chemistry; Ojima, I.; McCarthy, J. R.; Welch, J. T., Eds.; ACS Symposium Series 639; ACS: Washington, DC, 1996; pp. 129–142.

- (a) Allemendinger, T.; Furet, P.; Hungerbuhler, E. *Tetrahedron Lett.* **1990**, *31*, 7297–7300; (b) Allemendinger, T.; Felder, E.; Hungerbuhler, E. *Tetrahedron Lett.* **1990**, *31*, 7301–7304.
- Bartlett, P. A.; Otake, A. J. Org. Chem. 1995, 60, 3107– 3111.
- 5. (a) Welch, J. T.; Lin, J. *Tetrahedron* 1996, *52*, 291–304;
 (b) Lin, J.; Toscano, P. J.; Welch, J. T. *Proc. Natl. Acad. Sci. USA* 1998, *95*, 14020–14024.
- Okada, M.; Nakamura, Y.; Sato, A.; Horikawa, H.; Saito, A.; Taguchi, T. Chem. Lett. 2002, 28–29.
- (a) Otaka, A.; Watanabe, H.; Yukimasa, A.; Oishi, S.; Tamamura, H.; Fujii, N. *Tetrahedron Lett.* 2001, 42, 5443–5446; (b) See also: Otaka, A.; Watanabe, H.; Mitsuyama, E.; Yukimasa, A.; Tamamura, H.; Fujii, N. *Tetrahedron Lett.* 2001, 42, 285–287.
- 8. (*E*)-Difluoroallylic alcohols **3a–c** were prepared by DIBAL reduction of the corresponding ester forms **1**. See Refs. 6 and 7.
- (Z)-Difluoroallylic alcohol 3d was prepared by a threestep procedure: (1) indium-mediated reaction of 4-bromo-4,4-difuoro-2-butyn-1-ol TBDPS ether with benzaldehyde; (2) hydrogenation (Pd-BaSO₄, quinoline); (3) TBAF, THF. For examples of indium-mediated difluoropropargylation of aldehydes, see: (a) Wang, Z.; Hammond, G. B. *Tetrahedron Lett.* 2000, 41, 2339–2342; (b) Wang, Z.; Hammond, G. B. J. Org. Chem. 2000, 65, 6547–6552.
- Lipshutz, B. H.; Segi, M. Tetrahedron 1995, 51, 4407– 4420.
- 11. Typical procedure (Table 1, entry 2): Under an argon atmosphere, to a solution of **3a** (1 mmol) in THF at 0°C was added trimethylaluminum (5 mmol, 1 M hexane solution). After stirring for 10 min, a 0.5 M THF solution of CuI·2LiCl (2.5 mmol)¹⁰ was added and the reaction mixture was stirred for 20 h at 0°C. Addition of 5% HCl and extractive work-up gave the crude product, which was purified by column chromatography (silica gel, hexane–AcOEt 1:1) to give **4a-1** in 98% yield.
- Copper-catalyzed SN' substitution of allylic phosphates and chlorides with trialkylaluminum was reported, see: Fleming, S.; Kabbara, J.; Nickish, K.; Westermann, J.; Mohr, J. Synlett 1995, 183–185.
- Copper-mediated conjugate additions of trialkylaluminum with enones were reported. See: (a) Kabbara, J.; Fleming, S.; Nickisch, K.; Neh, H.; Westermann, J. *Tetrahedron* 1995, *51*, 743–754; (b) Takemoto, Y.; Kuraoka, S.; Hamaue, N.; Aoe, K.; Hiramatsu, H.; Iwata, C. *Tetrahedron* 1996, *52*, 14177–14188; (c) Benett, S. M. W.; Brown, S. M.; Muxworthy, J. P.; Woodward, S. *Tetrahedron Lett.* 1999, *40*, 1767–1770; (d) Pamies, O.; Net, G.; Ruiz, A.; Claver, C.; Woodward, S. *Tetrahedron: Asymmetry* 2000, *11*, 871–877; (e) Kraus, N.; Hoffmann-Röder, A. *Synthesis* 2001, 171–196.